GLM Data Requirements

Driver Data:

Meteorological driver data at daily (or hourly) frequency is mandatory. The following items should be included as daily or hourly average values in columns in a meteorological driver data CSV file.

Item	Column	Units	Notes
	Header		
Time	time	YYYY-MM-DD (or YYYY-MM-DD HH:MM:SS)	
Shortwave Radiation	ShortWave	Watts/meter ²	
Longwave Radiation	LongWave	Watts/meter ²	Can be provided as direct incident intensity, net longwave flux, or estimated from cloud cover fraction(0-1)
Air Temperature	AirTemp	Degrees Celsius	Air temperature at 10 meters above water surface
Relative Humidity	RelHum	%	Relative humidity at 10 meters above the water surface
Wind speed	WindSpeed	Meters/second	Wind speed at 10 meters above water surface
Rainfall	Rain	Meters/day	Rainfall intensity per day (units remain m/day for hourly data)
Snowfall	Snow	Meters/day	Optional snowfall intensity per day (units remain m/day for hourly data)

Notes:

- Longwave radiation can be calculated from shortwave radiation, air temperature, barometric pressure, relative humidity and latitude (Crawford et al. 1999).
- Relative humidity can be calculated from vapour pressure and air temperature (DY. 2002)
- If wind is not measured at 10-meter above water height, a 10-m height estimate can be obtained using the power law with $\alpha = 1/7$

$$\frac{u}{u_r} = \left(\frac{z}{z_r}\right)^{\alpha}$$

Streamflow data is not mandatory. If available, users should include the following, at a **daily time step**, in a separate CSV file for each inflow and each outflow (only 'time' and 'flow' columns are required for outflow, as the model calculates the water temperature and salinity). Any number of inflows and outflows can be included.

Item	Column Header	Units	Notes
Time	time		
Time	ume		
Volumetric Flow	flow	Megaliters/day	Convert from m ³ /sec to ML/day
			by multiplying by 86.4
Streamflow Water	temp	Degrees	
Temperature	_	Celsius	
Salinity	salt	mg/Liter	If salinity is known to be
			negligible, can be all zero

Lake Specific Parameters:

The following lake-specific parameters are necessary for the model to adequately represent the lake of interest:

Symbol	Parameter Description	Units	Notes
K _d or K _w	Background light attenuation	Meters ⁻¹	Can be estimated from 1.7/(secchi
	coefficient		depth in meters; Poole and Atkins,
			1929)
latitude	Latitude of center of lake	Degrees	
		North	
longitude	Longitude of center of lake	Degrees	
		East	
base_elev	Elevation of the deepest point	Meters	
	of lake	above sea	
		level	
crest_elev	Elevation of the crest lake	Meters	
	basin	above sea	
		level	
bsn_length	Basin length at crest elevation	Meters	Rough estimates are sufficient
bsn_wid	Basin width at crest elevation	Meters	Rough estimates are sufficient
Н	Elevation points for lake	Meters	Any number of points is supported
	morphometry	above sea	
		level	
A	Cross sectional areas	Thousand	
	corresponding to the H	Meters ²	
	elevations		

The following are not required but may improve model performance:

Symbol Parameter		Units	Notes	
	Description			
the_temps	Initial water	Degrees Celsius	Any number of points	
	temperature profile		(depths) is supported	
	for desired date of			
	simulation start			
the_depths	Depths below surface	Meters below		
	corresponding to the	water surface		
	water temperature			
	measurements			
the_sals	Initial salinity profile	Practical salinity		
	corresponding to	units (psu) ?		
	the_depths			
lake_depth	Initial water level	Meters		
	above deepest point			
	of lake			
coef_wind_drag	Bulk aerodynamic	[dimensionless]	Default is 0.0013; can be	
(C _M)	coefficient for transfer		estimated from C _M =	
	of momentum		$0.0013 W_s^{1/3}$ where W_s is	
			estimated from surrounding	
			canopy and lake surface	
			area (Read et. al 2014)	

References:

Crawford, T.M. and Duchon, C.E. 1999. An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation. Journal of Applied Meteorology. 38, 1999, pp. 474 - 480.

DY. 2002. Dynamic Reservoir Simulation Model: DYRESM: User Manual. Crawley WA, Australia : Centre for Water Research, University of Western Australia, 2002.

Hipsey, M.R., Bruce, L.C., Hamilton, D.P., 2014. GLM - General Lake Model: Model overview and user information. AED Report #26, The University of Western Australia, Perth, Australia. 22pp. <u>http://aed.see.uwa.edu.au/research/models/GLM/Pages/Manual/AED_GLM_v1_4_0_20140908_draft.pdf</u>

Poole, H.H., Atkins, W.R.G., 1929. Photo-electric measurements of submarine illumi- nation throughout the year. J. Mar. Biol. Assoc. U.K. (New Series) 16, 297–324.

Read, J. S., Winslow, L. a., Hansen, G. J. a., Van Den Hoek, J., Hanson, P. C., Bruce, L. C., & Markfort, C. D. (2014). Simulating 2368 temperate lakes reveals weak coherence in stratification phenology. Ecological Modelling, 291, 142–150. doi:10.1016/j.ecolmodel.2014.07.029